O-SILYLATED ENGLATE PHENYLTHICALKYLATION

A SYNTHESIS OF α , β -UNSATURATED 5- AND 6-MEMBERED LACTONES

Hassan A Khan and Ian Paterson*
Department of Chemistry, University College London,
20 Gordon Street, London WC1H OAJ, England

Summary ZnBr2-catalysed phenylthioalkylation of ketene bis(trimethylsilyl)acetals, obtained from carboxylic acids, with appropriate α -chlorosulphides can be used to prepare γ - and δ -lactones

 ${\it O}$ -Silylated enolate chemistry has recently produced new and improved methods for forming carbon-carbon bonds next to the carbonyl group $^{1-3}$ In particular, alkylation of ${\it O}$ -silylated enolates of ketones and esters by α -chloroalkyl phenyl sulphides (PhSCHCIR), 2,3 under Lewis acid-catalysis, leads overall to α -alkylation or α -alkylidenation after a suitable sulphur removal step 3

We now report that α,β -unsaturated 5- and 6-membered lactones, versatile synthetic intermediates 4 as well as a structural feature of many natural products, 5 are easily prepared by this phenylthioalkylation method by using the 0-silylated enolate derivatives of carboxylic acids 6 Zinc bromide-catalysed alkylation of these ketene bis(trimethylsilyl)acetals (1) with suitable α -chlorosulphides (e.g. 2) gives, after acidic workup, the phenylthiolactones (3) Sulphur oxidation and β -elimination then gives the corresponding Δ^{α}, β -butenolides (3 \rightarrow 4) Similarly, unsaturated 6-membered lactones can be successfully prepared (1 \rightarrow 6 \rightarrow 7) using γ -silyloxy substituted chlorides (e.g. 5)

Further examples of unsaturated lactones, prepared in this way, are 12, 13, and 16 (for R = Me, Et) The α -chlorosulphides (2, 5, 8, 9, and 14) used were all made by NCS chlorination of the corresponding phenyl sulphides (CCl₄, 70°, 2-3 h, >95%), which were prepared by various routes The phenylthicalkylation reactions were carried out in the usual way, using a catalytic amount of ZnBr₂ in CH₂Cl₂ (20°, 45 min), but were now given an aqueous acidic workup (2M HCl) leading to hydrolysis and lactonisation of the intermediate alkylation products The β -phenylthicactones obtained were generally diastereometric mixtures at the α - and β -carbons, such that sulphoxide cycloelimination, which we had used previously, was now unsuitable for intro-

ducing the unsaturation Conversion to the desired α,β -unsaturated lactones was best performed, therefore, by first oxidising to the sulphone with MCPBA (CH₂Cl₂, 20°, 3 h), then directly β -eliminating using DBU as the base (CH₂Cl₂ or CHCl₃,20°, 1 h)

Alternatively, reductive sulphur removal by W-2 Raney nickel $(Me_2CO, 20^0, 2 h)^2$ could be used, giving a synthesis of saturated lactones (e g 17 + 18 + 19 and 17 + 20 + 21)

We thank the S E R C for a Postdoctoral Assistantship ${\sf NOTES}^9{\sf AND}$ REFERENCES

¹For reviews, see M T Reetz, Angew. Chem Internat. Ed., **21**, 96 (1982), J K Rasmussen, Synthesis, 91 (1977)

²I Paterson and I Fleming, Tetrahedron Letters, 993, 995, and 2179 (1979)

³For other applications of phenylthioalkylation, see H A Khan and I Paterson, *ibid* , 2399 (1982), R Tanikaga, K Miyashita, H Sugihara, and A Kaji, *J C. S. Chem. Comm.*, 1106 (1981)

⁴P Brownbridge, E Egert, P G Hunt, O Kennard, and S Warren, *J. C. S. Perkin I*, 2751 (1981) and references therein, E J Corey and G Schmidt, *Tetrahedron Letters*, 2317 (1979)

⁵Y S Rao, *Chem. Rev* , **76**, 625 (1976)

⁶C Ainsworth and Y -N Kuo, J. Organometal. Chem., **46**, 73 (1972)

⁷Precursor phenylsulphides (H for Cl in diagrams) were prepared as follows for **2** (R₂=H, Me) and **5** (R₂ = H), reaction of NaSPh with the appropriate chloroalcohol (EtOH, 20°, 16 h) was followed by silylation (Me₃SiCl, DMAP-Et₃N, CH₂Cl₂, 20°, 71-80% overall), for **5** (R₂ = Me), addition of PhSH to methyl vinyl ketone (piperidine, CCl₄, 0°, 16 h), reduction (LiAlH₄, Et₂O), then silylation (75% overall), for **8**, **9**, and **14**, PhSCH₂Li addition to cyclohexanone, 2-octanone, or cyclohexene oxide (TMEDA-THF, -23°) was followed by *in situ* silylation (Me₃SiCl, -23° \rightarrow 20°, 70% for **8**, 87% for **9**, 80% for **14**)

 8 On completion of the phenylthioalkylation reaction, 2 the reaction mixture was poured into 2 M HCl solution and extracted twice with Et_2O The combined organic fractions were shaken with 2 M HCl for a few minutes, then dried and evaporated 2 n 2 vacuo Flash chromatography on 2 SiO gave the corresponding lactones

 $^9\mathrm{Y}$ 1elds quoted are for 1solated products (character1sed by 200 MHz $^1\mathrm{H}$ n m r , m s , and 1 r.)